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Editorial on the Research Topic

Outbreak oracles: how AI's journey through COVID-19 shapes

future epidemic strategy

In the wake of the coronavirus disease 2019 (COVID-19) pandemic, the
convergence of artificial intelligence (AI), Big Data, and in silico
simulation has emerged as a cornerstone in pandemic surveillance and
public health informatics. As early as January 2020, AI-driven tools, such as
BlueDot, flagged unusual pneumonia clusters in Wuhan days before the
World Health Organization (WHO) public alert (Brownstein et al., 2009).
Meanwhile, platforms like CORD-19 were developed to aggregate SARS-
CoV-2 literature for rapid machine-driven synthesis (Wang et al., 2020). By
mid-2021, AI-based forecasting models were routinely incorporated into
national response dashboards, demonstrating that algorithmic surveillance
could anticipate hospitalization peaks with a lead time of up to 2 weeks
(Institute for Health Metrics and Evaluation, 2019). This transformative
period witnessed AI's potential to reshape public health strategies,
emphasizing its significance in future epidemic preparedness. However,
challenges such as data privacy, algorithmic bias, and unequal access to
technological infrastructure persist as obstacles to global adoption.
Addressing these limitations is essential to ensure the inclusive and ethical
deployment of AI in public health.

The primary objective of this Research Topic is to collate
groundbreaking research and critical reviews that highlight AI's
contributions during the COVID-19 era and its implications for future
epidemic strategies. We aim to foster a comprehensive understanding of the
pivotal AI-driven methodologies in the pandemic response and how these
innovations can be harnessed for future health crises.

The Research Topic includes original research, technology, code, as
well as perspective papers. We received 16 submissions, 9 of which, after a
careful review process, were accepted for publication in this Research
Topic.

https://www.frontiersin.org/research-topics/59904/outbreak-oracles-how-ais-journey-through-covid-19-shapes-future-epidemic-strategy
https://www.frontiersin.org/research-topics/59904/outbreak-oracles-how-ais-journey-through-covid-19-shapes-future-epidemic-strategy


Drawing on Johns Hopkins surveillance data from 34 countries, a study
by Nesteruk(a) evaluates how demographic structure and surveillance
intensity shaped the late-phase contours. Regression analyses of 2022–2023
COVID-19 incidence, mortality, and case–fatality rates reveal median age
as the primary determinant: older populations recorded higher numbers of
detected cases and deaths per million. Testing density displayed a strong
association with incidence, yet when insufficient, it exaggerated fatality
ratios.

Song et al. introduce K-Track-COVID, an R Shiny dashboard that
unifies government APIs, WorldPop demographics, and KDCA line lists to
render fine-grained maps, regional time series, and SEIRD/SVEIRD
scenario forecasts for all 17 South Korean provinces. Interactive controls
enable users to filter dates, strata, and health-system indicators, while an
embedded stochastic simulator generates animations and tabular projections
100 days ahead. Compared with the WHO, Johns Hopkins University
(JHU), and the Centers for Disease Control and Prevention (CDC)
dashboards, K-Track-COVID uniquely couples hotspot analytics with
modifiable epidemiological models, offering a transferable template for
data-driven preparedness beyond COVID-19.

Barmak et al. advance explainable AI by introducing a transition-matrix
framework that maps high-dimensional embeddings onto clinician-defined
features, thereby rendering model outputs transparent without retraining.
The authors formalize the mapping as a pseudo-inverse solution and
implement a visual analytics pipeline that scales across modalities.
Validation on the Massachusetts Institute of Technology-Beth Israel
Hospital Electrocardiogram (MIT-BIH ECG) arrhythmia and ACDC
cardiac-MRI datasets yields Cohen's κ of 0.89 and 0.80, respectively,
demonstrating strong alignment with expert annotations while preserving
diagnostic accuracy.

A study by Oliveira et al. presents a cohort study spanning eight
Brazilian hospitals (n = 421) to develop low-cost triage models for COVID-
19. Using 28 collected admission variables, the authors construct seven data
subsets to explore missing data strategies and train 27 classical algorithms,
as well as dense neural networks, under Monte Carlo cross-validation. A
random forest achieved 80% accuracy (AUC: 0.91), while an SVC yielded
87% PPV with minimal false positives. Dyspnea, general condition, SpO2,
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age, and urea emerged as key predictors, underscoring the potential of
pragmatic AI deployment in resource-constrained settings.

Nesteruk's(b) study generalizes the classical SIR framework by
partitioning infectious and removed compartments into registered and
unregistered subgroups and introducing a visibility coefficient β, which
yields a five-equation system whose analytical solutions facilitate
accelerated parameter estimation. Applying the model to two pertussis
waves in England (2023–2024) under full case ascertainment, he
reproduces the cumulative and daily incidence curves with a 17% 4-month
predictive error.

Melnykova et al. developed an AI pipeline for analyzing and correcting
post-traumatic dysarthric speech in military patients. Using the TORGO
corpus, they benchmarked a mel-spectrogram CNN against an MFCC-based
LSTM, achieving accuracies of 94% and 91%, respectively. The CNN
achieves higher precision and recall for healthy and low-severity classes,
whereas the LSTM performs better in detecting severe cases. Feature-
saliency analysis highlights spectral cues guiding rehabilitation. Ensemble
modeling and data augmentation are proposed to generalize across accents
and noise, underscoring AI's promise for scalable speech therapy.

A study by Chaikovsky et al. investigates whether subtle quantitative
alterations in serial 12-lead electrocardiograms (ECGs) predict outcomes in
severe COVID-19. Among 26 intensive care unit (ICU) patients (six of
whom died), the authors computed 240 waveforms and HRV metrics,
summarized by a composite U-score. They paired them with NEWS and
SpO2 for cluster and CART modeling. T-wave singular value
decomposition (SVD), R-wave amplitude (lead II), and Q-wave amplitude
(lead I) proved to be the most discriminative, yielding a three-split decision
tree that classified survival with 96% cross-validated accuracy, highlighting
ECG micrometrics as a practical bedside prognostic tool.

Lyimo et al. surveyed 76 Environmental Health Officers across
Morogoro, Ilala, and Dodoma to assess their readiness for ML-based
forecasting of waterborne diseases. With a 66% response rate, respondents
displayed moderate ICT competence yet limited AI literacy: only 54% had
previously encountered AI/ML and 64% rated their familiarity as low.
While the majority recognized ML's potential to improve outbreak
prediction, they flagged infrastructure gaps, poor data quality, and skill
shortages as barriers.

https://doi.org/10.3389/frai.2025.1559880
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The perspective article by Huaiyan et al. offers a comprehensive view
on how digital technologies will redefine infectious disease practice in the
aftermath of COVID-19. Surveying bioinformatics, AI, big data analytics,
nanotechnology vaccines, blockchain, and telemedicine, the authors map
converging trends in prevention, early diagnosis, therapy, and supply–chain
governance, while highlighting the ethical imperatives of data sovereignty
and algorithmic bias.

In the future, we urge the community to align AI outbreak tools with the
Findability, Accessibility, Interoperability, and Reusability (FAIR) Data
Principles and the WHO's Preparedness Strategy (2023), ensuring that
models are not only performant but interoperable and equitable across low-
resource settings (Wilkinson et al., 2016). By building on the lessons of
COVID-19, where transparency, open data, and cross-disciplinary
collaboration proved critical, the field should coalesce around a shared
framework that accelerates innovation and trust in future AI-powered
epidemic responses.
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Modern artificial intelligence (AI) solutions often face challenges due to the “black box” nature of
deep learning (DL) models, which limits their transparency and trustworthiness in critical medical
applications. In this study, we propose and evaluate a scalable approach based on a transition matrix
to enhance the interpretability of DL models in medical signal and image processing by translating
complex model decisions into user-friendly and justifiable features for healthcare professionals. The
criteria for choosing interpretable features were clearly defined, incorporating clinical guidelines and
expert rules to align model outputs with established medical standards. The proposed approach was
tested on two medical datasets: electrocardiography (ECG) for arrhythmia detection and magnetic
resonance imaging (MRI) for heart disease classification. The performance of the DL models was
compared with expert annotations using Cohen’s Kappa coefficient to assess agreement, achieving
coefficients of 0.89 for the ECG dataset and 0.80 for the MRI dataset. These results demonstrate
strong agreement, underscoring the reliability of the approach in providing accurate, understandable,
and justifiable explanations of DL model decisions. The scalability of the approach suggests its
potential applicability across various medical domains, enhancing the generalizability and utility of
DL models in healthcare while addressing practical challenges and ethical considerations.

Keywords
healthcare; artificial intelligence; deep learning; medical signal processing; medical image
analysis; model interpretability

1 Introduction
The rapid development of AI has made it important to explain the

decisions made by AI systems, a concept known as explainable artificial
intelligence (XAI) (Confalonieri et al., 2020). Within AI, machine learning
(ML) encompasses various algorithms and models, including traditional
ML methods and DL techniques. DL, a subset of ML, utilizes neural
networks with multiple layers to model complex patterns in data. However,
DL models often suffer from the “black box” problem, where their internal
decision-making processes are not transparent, limiting their
trustworthiness in critical applications like healthcare (Hassija et al., 2024).

It is also worth noting that XAI implements the “right to explanation”
(Vredenburgh, 2022), that is, the right to have a clear explanation of the
result of the algorithm’s work. This right applies to each of us when the
algorithm’s decision directly affects a person. Such rights are already being
developed, although the general «right to explanation» is still under
discussion. In the information society, the “right to explanation” is



becoming an extremely important concept, as digital technologies, AI, and
ML will continue to be actively applied to solving various problems of
human activity (Venkatesan et al., 2023; Longo et al., 2024).

Our study enhances the role of AI in resource distribution and strategic
decision-making by making DL model decisions more interpretable for
healthcare providers. This interpretability is crucial for effective decision-
making and resource management in health crises like the COVID-19
pandemic (Zaoui et al., 2023). Moreover, the paper addresses the ethical,
legal, and societal dimensions of AI by emphasizing transparency and
trustworthiness in AI applications. The proposed methods ensure that AI
decisions are accurate, understandable, and justifiable by establishing clear
criteria and metrics. We define “understandable” as the degree to which
healthcare professionals can comprehend the model’s decision-making
process through interpretable features that are directly related to clinical
knowledge. “Justifiable” refers to the model’s ability to provide
explanations that are supported by clinical guidelines and empirical
evidence. These criteria are quantitatively assessed using statistical metrics
such as Cohen’s Kappa coefficient to measure agreement between model
explanations and expert annotations, and by evaluating the consistency of
the model’s decisions with established medical standards.

In this study, we aim to address the issue of explaining decisions made
by AI. Previously, in Radiuk et al. (2024), we proposed an approach to
explain the results of a DL model by mapping its decisions to those of a
traditional ML model using a transition matrix. This approach requires both
a DL model and a corresponding ML model trained on the same data.
However, in practice, we often have a DL model without an equivalent ML
model. In this case, we cannot apply the specified approach to explaining
the decisions made by the DL model.

Therefore, the objective of this study is to apply our approach to the
case of medical data processing, where there is no ML model corresponding
to the DL model. Instead, we consider a set of features that are
understandable to healthcare experts. Using these features, we propose
interpreting the decisions obtained by the DL model. To fulfill the study’s
goal, it is essential to develop a new scalable visual analytics approach. The
scalability of our approach lies in its ability to be applied across different
types of medical data and tasks without the need for retraining the DL
model or developing new ML models for each case. By utilizing a transition



matrix to bridge the DL model’s decision-making with expert-defined
features, the method can be adapted to various medical signal and image
processing applications. This adaptability allows for efficient extension to
new datasets and clinical problems, thereby enhancing its practical utility in
diverse healthcare settings. Finally, the main contribution of this work is the
scalable approach to explain the results obtained by DL models, based on
features understandable to healthcare experts for medical signal and image
processing tasks.

The structure of the article is as follows. The following section presents
an analysis of the current state of the problem under study. Section 3
describes the proposed scalable approach to presenting decisions made by
DL models using features understandable to the physician, given the
solution of medical signal and image processing problems. Section 4
presents the results of computational experiments and their interpretation.
Finally, Section 5 concludes the results obtained and suggests further
directions of this research.

2 State of the arts
In general, it is believed that XAI adheres to three principles:

transparency, interpretation, and explanation (Phillips et al., 2021). We can
talk about the inherent transparency of XAI if the developer can describe
and explain how the model forms and updates parameters from statistical
training data and how it makes predictions on new data (Pääkkönen and
Ylikoski, 2021). By interpretation of XAI, we mean understanding how the
AI model forms its output data and explaining its decisions to people
(Räuker et al., 2023). Explanation in XAI is an important concept but
without a clear definition. It is believed that AI explanation in a broad sense
is a set of features that influenced the decision (i.e., classification or
prediction) for a specific case (Notovich et al., 2023). If AI-based
approaches meet these requirements, then they are said to provide the basis
for justifying decisions, tracking and verifying them, and improving and
researching new facts (Kim et al., 2023).

Explainable artificial intelligence issues are especially critical in areas
such as medicine, defense, finance, and law, where it is important to
understand AI decisions and trust them (Manziuk et al., 2021; Mora-



Cantallops et al., 2024). Today there are many approaches that provide
decent results in various tasks of such sensitive areas of human activity
(Wang and Chung, 2021). In general, DL methods provide better results
compared to traditional ML methods for solving problems with
heterogeneous data (Krak et al., 2023). In particular, convolutional neural
network (CNN) models (Radiuk et al., 2021) are state-of-the-art for
computer vision tasks (Smith et al., 2021), and transformer models are
state-of-the-art for natural language processing tasks (Khurana et al., 2023).
However, as already mentioned, decisions made by DL methods are not
always transparent and understandable.

The field of XAI is experiencing significant advancements, particularly
in the development of methods to enhance the transparency of AI models in
the healthcare domain. Researchers are actively exploring various
approaches, including the construction of feature models and the use of
manually crafted features to provide clearer explanations of AI decisions.
As an example, Bassiouny et al. (2021) present an innovative approach to
diagnosing neonatal lung diseases by training an object detection model,
faster-RCNN, to identify seven key lung ultrasound features rather than
making direct diagnostic predictions. This methodology enhances the
interpretability of the results and keeps clinicians in control by providing
annotated images to support their diagnostic decisions. The study
demonstrates that the model surpasses single-stage detectors like RetinaNet,
achieving high mean average precision, thus balancing performance with
trustworthiness in medical practice.

In their review, Salahuddin et al. (2022) explore various interpretability
methods for deep neural networks in medical image analysis, emphasizing
that these methods aim to enhance transparency and trust in AI systems.
They highlight that while these interpretability techniques provide valuable
insights, they are often approximations and may not fully capture the true
decision-making processes of the models, necessitating cautious application
in clinical settings. In addition, Chan et al. (2022) developed and compared
three ML models to predict long-term mortality in critically ill ventilated
patients, finding that boosting algorithms and logistic regression achieved
similar performance.

Similarly, Lu et al. (2023) propose a comprehensive workflow that
includes a step where medical professionals label differential diagnosis
features according to medical guidelines, effectively blacklisting irrelevant



features extracted from electronic health records. This approach aims to
“reduce workloads of clinicians in human-in-loop data mining” by focusing
on feature oversight rather than full prediction, thus enhancing the
trustworthiness and efficiency of the AI model.

In Moreno-Sánchez (2023), a heart failure survival prediction model is
enhanced by integrating explainable AI techniques, aiming to balance
predictive performance and interpretability. This approach provides
transparency by explaining feature contributions to predictions, making the
model’s decision-making process clearer for clinicians. Consequently, it
fosters greater trust and practical adoption in clinical settings.

Pintelas et al. (2023) introduce a novel framework for 3D image
recognition that utilizes interpretable features such as lines, vertices, and
contours to enhance explainability. This approach is particularly promising
for medical imaging, achieving performance comparable to state-of-the-art
black-box models while maintaining transparency. However, the
development of interpretable methodologies for 3D image segmentation
remains an emerging area of research, with most existing techniques
originally designed for 2D image classification tasks.

Based on the analysis of existing literature, we identified a lack of clear
methodologies for constructing feature models that enhance the
interpretability of DL models in medical applications. The primary goal of
this study is to enhance the decision-making processes of DL models in
processing medical signals and images by introducing a novel scalable
approach that translates complex model outputs into interpretable features
understandable to healthcare professionals.

The main scientific contributions of this work are:

• We introduced a new scalable visual analytics approach that utilizes a
transition matrix to bridge the DL model’s decision-making with
interpretable features defined by experts.

• Our approach systematically incorporates clinical guidelines and expert
rules into the feature selection and model development process.

• We applied and validated our approach on two distinct medical datasets–
ECG signals for arrhythmia detection and MRI scans for heart disease
classification–achieving strong agreement with expert annotations
(Cohen’s Kappa coefficients of 0.89 and 0.80, respectively).



3 Materials and methods

3.1 Basic approach

In Radiuk et al. (2024), we addressed the problem of explaining
decisions made by DL models by establishing a relationship between the
features learned by a DL model and those used in a traditional ML model.
This idea is illustrated in Figure 1.

FIGURE 1
The basic idea of our approach: The process of converting various medical data types–such as
images, signals, and text–into a labeled training dataset, which is subsequently transformed into
feature matrices where rows represent labeled samples and columns correspond to extracted
features, organized by clarity for model development.

The process described above involves the formation of ML models,
which have all the necessary features of understandable AI: transparency,
interpretability, and explainability. Otherwise, these features (areas of
attention) are formed according to certain algorithms (DL models) and, as a
result, are not entirely clear, or not at all clear to the end user.



It is worth noting that there are also intermediate cases when the signs
are “in the middle” between the indicated cases, such as:

• Decomposition of understandable areas of attention into
“incomprehensible” signs, both with the possibility of reverse
transformation and without such possibility.

• In addition to features understandable to the public of experts, there may
be separate features (or combinations of previously obtained ones) that
are understandable to more experienced experts or are based on intuition;
here, for each specific case, the community decides whether these cases
are transparent or not.

As a result of the above, let us have one training sample and two models
with features. One model is built by the DL model, and the other model has
features formed by an expert.

Next, we formalize the problem under consideration. We represent the
features of the DL model in the form of matrix A of dimension m × k and
the features of the other model in the form of matrix B of dimension m × l
as follows:



where m is the number of vectors obtained from the training sample
during DL model training, k represents the number of features, and l stands
for the number of features.

We emphasize once again that the features formalized in formulas (1, 2)
are obtained from the same training sample. We also note that in general k
can be equal to, less than, or greater than l.

In practical problems that are modeled in this way, that is, in the
presence of two mappings for the same objects for different sets of features,
it is often necessary to express feature vectors of different dimensions
through each other. In other words, consider the problem where for different
matrices A and B it is necessary to find such a matrix T that the following
equality holds:

where T is the transition matrix between matrices A and B.
Note that in linear algebra, formula (3) is a usual change of basis of a

vector space, and if the condition m = k = l is met, finding matrix T is trivial,
that is:

For the case under consideration, m ≠ k ≠ l, the inverse matrix does not
exist, and therefore it is proposed to apply a generalization of the inverse



matrix—the pseudo-inverse matrix (Cvetković Ilić and Wei, 2017). We
propose to find such a matrix T of dimension k × l, which provides the
transition between matrices A and B:

Note that the approximation in formula (5) is established with respect to
the Euclidean norm in the feature space of the matrices. It is proposed to
find matrix T as follows:

In practice, it is proposed to define  using SVD decomposition
(Kalman, 2002), even though other methods are described in Krak et al.
(2020):

where  is the singular value decomposition of matrix A, the

matrix  is formed by transposing the matrix Σ and replacing all its non-
zero values of diagonal elements with inverse ones:



Therefore, for an arbitrary row vector of features , , obtained by
the model defined by matrix A, the corresponding row vector of features ,

, by the model defined by matrix B, is determined using the obtained
transition matrix T as follows:

The approach described above by formulas (1–8) somehow correlates
with approximation, that is, the description by one function, even given in
tabular form, of a given form of another function, perhaps also in tabular
form.

There are several approaches to data approximation. One of them
consists in approximating a complex function with a simpler function,
which is used for all tabular values, but it is not necessary that it passes
through all points. This approach is also called curve fitting, which is
sought to be carried out so that its deviation from the tabular data is
minimal. The authors propose to use the transition matrix T according to



formula (4) between two feature models, presented in the form of matrices,
for the same set of input data as such a function.

Figure 2 briefly shows the main steps of the basic approach, first
proposed in Radiuk et al. (2024) to obtaining the transition matrix T.

FIGURE 2
Diagram of the basic approach to derive the transition matrix T from input matrices A and B,
involving three main steps: visual analytics of the matrices, defining matrix A+, and establishing
matrix T, which serves to interpret DL model outputs in terms of human-expert features.

First, we extract two matrices, A from the DL model and B from the ML
model, both representing the same data samples.

Step 1: Use a visual analytics tool, either Principal Component Analysis
(PCA) by Pearson (1901), or t-distributed Stochastic Neighbor
Embedding (t-SNE) by Hinton and Roweis (2002), to map these high-
dimensional feature vectors onto a two-dimensional plane.

A dimensionality reduction technique is aimed at preserving the local
structure of the data and reveal clusters, allowing us to visually compare
the feature vectors from the DL model and the interpretable feature set.
By ensuring their relative positions match across models, we facilitate the
accurate computation of the transition matrix T.

Step 2: Compute the pseudo-inverse matrix .

Step 3: Calculate the transition matrix T.
Finally, use matrix T to translate DL results into features understandable

by the ML model.



3.2 The proposed scalable approach

To overcome the absence of a corresponding ML model, we propose a
scalable approach that constructs matrix B using expert-defined
interpretable features. This approach allows us to apply the transition matrix
method to enhance the interpretability of DL models.

The proposed scalable approach is aimed at simplifying complex, hard-
to-understand features from a DL model into a more user-friendly form,
making the results easier to interpret. The extracted feature vector, which is
the penultimate layer in a DL model, is transformed using a transition
matrix T by formula (6) to produce results that are understandable to the
end user.

Suppose there is an expert in the subject area of the problem under
consideration (i.e., the end-user) who compiles an exhaustive list of features
by which they determine the belonging of an object to a particular class.
Further, for each feature from the list of features, the expert indicates the
numerical intervals into which the value of the feature should fall for the
classes under consideration. Finally, for each instance (object) from the
training dataset, the value of each feature is calculated.

The values of features can be determined in several ways, namely:

• Empirically, using the expert’s knowledge of the subject area of the
problem under consideration.

• Using formulas or statistical indicators that are understandable to the end
user.

• By visual representation (in various ways) of a fragment of a signal or
image, in comparison with similar fragments from labeled training data.

• Utilizing visual analytics.
• Using ML models specially built for this case.
• Using DL models specially built for this case.

The selection of interpretable features is guided by the following
criteria:

• Clinical relevance: Features must be directly related to clinical indicators
that healthcare professionals use for diagnosis and treatment decisions.



• Measurability: Features should be quantifiable using available tools or
methods, ensuring consistent measurement across different samples.

• Distinctiveness: Selected features should provide unique information
about the data, minimizing redundancy and multicollinearity.

• Expert Consensus: Features should be agreed upon by a panel of experts
to reflect standard clinical understanding and practices.

Figure 3 shows the main steps of the method for constructing matrix B,
according to the proposed scalable approach.

FIGURE 3
Diagram that outlines the proposed sequential approach to constructing matrix B from an initial
dataset, through steps including compiling a feature list, defining numerical intervals, selecting
techniques to extract features, validating feature selection, and ultimately constructing matrix B
based on the defined transition matrix from the deep learning model to the feature model.

Below we provide the following steps to build matrix B.
Input information: An expert panel in the subject area of the problem

under consideration and the dataset on which the DL model was trained.
Step 1: Compilation of feature list. An expert panel comprising

cardiologists and medical imaging specialists compiles a comprehensive list
of interpretable features based on clinical guidelines, literature, and
diagnostic practices. The goal is to cover all relevant aspects that could
influence the classification while ensuring the features meet the criteria
above.

Step 2: Definition of numerical intervals. For each feature, the experts
define numerical intervals that correspond to different classes or
pathological conditions. These intervals are based on clinical thresholds and
empirical data, providing a clear delineation between classes.

Step 3: Definition of techniques to obtain features. We establish
standardized methods for quantifying each feature:



• Direct measurement: Using signal processing techniques or image
analysis tools to extract quantitative values from the data.

• Computational algorithms: Applying validated algorithms (e.g., peak
detection algorithms for ECG) to automate feature extraction.

• Statistical analysis: Employing statistical methods to calculate features
such as mean values, variances, and ratios that are clinically significant.

Step 4: Validation of feature selection. The selected features undergo
validation to ensure reliability and consistency:

• Pilot testing: Features are tested on a subset of the data to assess their
discriminative power and measurement consistency.

• Inter-rater reliability: Multiple experts independently measure the features
on the same samples to calculate agreement levels, using statistical
metrics.

• Refinement: Based on validation results, features may be refined, or
additional features may be included to enhance interpretability and
accuracy.

Step 5: Construction of matrix B. Using the validated methods, we
extract feature values for each sample in the training set, forming matrix B.
This matrix represents the data in terms of interpretable features aligned
with expert understanding.

Output information: Matrix B.
It should be also noted that the scalability within the proposed scalable

approach refers to the following characteristics:

• Adaptability to various medical domains: The method can be efficiently
extended to different types of medical data and DL models without
substantial changes to the core methodology.

• Ease of integration with expert-defined features: By utilizing a transition
matrix and mapping DL outputs to interpretable features, the approach
can be applied across different clinical problems with minimal
adjustments.

3.3 Evaluation criterion



In this work, Cohen’s Kappa coefficient (κ) is used to evaluate the
quality of the proposed approach. The κ coefficient is a reliable statistical
indicator for evaluating inter-expert reliability for qualitative (categorical)
elements. It quantifies the level of agreement between two experts beyond
chance.

The formula for Cohen’s Kappa coefficient κ is as follows:

where  is the level of observed (empirical) agreement between two
experts, and  is the level of expected (calculated) agreement between the
same experts.

For the problem of binary classification of medical signals and/or
images with a confusion matrix consisting of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN), the elements
of formula (9) have the following form:

In formula (10),  is the proportion of cases in which the DL model and
the human expert come to a consistent decision. Instead, in formula (11), 
is calculated based on the marginal sum values of the decisions of the two
experts.

The value of the κ coefficient according to formula (9) is in the range
[−1;1], where 1 denotes perfect agreement, 0 stands for no agreement, and
negative values reflect less agreement than expected by chance.



4 Results and discussion
Experimental evaluation of the proposed scalable approach was

performed by solving two problems with DL models:

• ECG analysis: Utilized a deep CNN based on the architecture proposed by
Kovalchuk et al. (2024).

• MRI analysis: Employed another deep CNN with a U-Net architecture for
image segmentation and classification as described in Slobodzian et al.
(2023).

Next, we present the results and discussion of the application of the
proposed approach to explaining the decisions made by DL models.

4.1 Detection of pathologies of heart activity based on ECG

The proposed approach was validated by the constructed  model
for the problem of detecting pathologies of heart activity (arrhythmias)
based on ECG in Kovalchuk et al. (2024). Below we describe the training
dataset, the  model, and the set of features that explained the
decisions and results of the proposed approach (the value of κ).

4.1.1 Training dataset and DL model

The problem of detecting pathologies of heart activity (arrhythmias)
based on ECG was solved using the reference dataset MIT-BIH Arrhythmia
Database (MIT-BIH) (Moody and Mark, 2005). The training of the 
model was performed on 80% of the data from MIT-BIH. Given the
annotations of the MIT-BIH set, the following classes/pathologies were
selected for the classification problem:

• Normal beat.
• Premature ventricular contraction.
• Paced beat.
• Right bundle branch block beat.
• Left bundle branch block beat.



• Atrial premature beat.
• Fusion of ventricular and normal beat.
• Fusion of paced and normal beat.
• Others.

Input information for training and testing the  model is presented
as a triad of cardiac cycles—in the center is the main cardiac cycle, to
which the previous and next cardiac cycles were added (Figure 4).

FIGURE 4
This figure presents an ECG signal fragment displaying a triad of cardiac cycles, where panel (A)
illustrates a heterogeneous appearance of the R peak, while panel (B) shows a homogeneous
expression of the R peak across cycles.

In this work, the  model was created based on the modified
architecture from Kovalchuk et al. (2024). The classification accuracy for
the training set was 99.95%, for the test set—99.13%.

The penultimate layer of the  model contained 8,192 neurons,
and the number of samples in the training sample was 52,180. Accordingly,
the size of the  matrix was  = 52,180—the number of objects
from the training subsample of the MIT-BH dataset,  = 8,192—the
number of features formed by the  model.

4.1.2 Features on ECG for explanation

For the experiment, we focused on detecting PVCs or Ventricular
Extrasystole as defined by established clinical guidelines, such as the
American Heart Association’s recommendations on ECG interpretation.
Cardiologists integrated these guidelines to identify key ECG features for



PVC detection, applying expert rules to enhance model explanations and
performance:

1. Absence of the P wave:

• Integration of clinical guidelines: According to clinical standards, the
absence of a P wave preceding a QRS complex suggests ectopic
ventricular activity, characteristic of PVCs.

• Expert rules applied: If the P wave is absent or not temporally associated
with the QRS complex, it indicates a PVC.

• Method of measurement: Used the NeuroKit2 toolkit (Makowski et al.,
2021) to detect P wave presence, ensuring compliance with guidelines for
accurate P wave identification.

1. Expanded and deformed QRS complex:

• Integration of clinical guidelines: Clinical guidelines state that PVCs
present with widened (≥120 ms) and abnormally shaped QRS complexes
due to aberrant conduction pathways.

• Expert rules applied: A QRS duration exceeding 120 ms with atypical
morphology is indicative of a PVC.

• Method of measurement: Employed a shallow neural network trained on
data annotated per these guidelines to detect QRS abnormalities.

1. Full compensatory pause:

• Integration of clinical guidelines: A full compensatory pause following a
PVC is a diagnostic criterion, where the sum of the pre-and post-PVC RR
intervals equals twice the normal RR interval.

• Expert rules applied: Applied the rule that ,
within a clinically acceptable tolerance.

• Method of measurement: Calculated RR intervals using NeuroKit2,
adhering to guidelines for RR interval measurement. In the following
subsection, we provide a detailed description of the measurement
process.

By integrating clinical guidelines and expert rules into feature selection
and measurement, we enhanced the model’s explanations and performance,



aligning the DL model’s outputs with clinical practice.

4.1.3 Statistical analysis for ECG classification

Given the significant amount of training and the significant time of
experts regarding filling in the values of features, non-empirical methods of
determining the value of features were used in this work.

For the “Absent P peak” feature, PCA was used. The application of
PCA and the reduction of data dimension to 3 made it possible to make sure
that the signal fragment with the presence and absence of P peaks is
separate. Given this, the presence/absence of the P peak was determined
using the Neurokit2.

Visualization of dimensionality reduction by PCA for the “Absent P
peak” feature is shown in Figure 5.



FIGURE 5
The results of applying PCA to classify data based on the “Absent P peak” feature, showing data
points distributed across three principal components for visualization of feature separation.

For the “Expanded and deformed QRS complex” feature, due to the
complexity of its detection by other methods, it is proposed to use a
specially trained neural network.

The “Full compensatory pause” feature. A compensatory pause is the
time elapsed after an extrasystole until the occurrence of a normal
contraction. Therefore, in the case when the extrasystole is located between
other extrasystoles, this calculation is not performed and is calculated only
for the last case of extrasystole in the sequence.

The presence or absence of this feature was checked as follows:



• Using the Neurokit2 package, the average RR interval between normal
cardiac cycles ( ) was determined.

• The interval between the R peak with extrasystole and the R peak of the
previous cycle ( ) was determined.

• The interval between the R peak with extrasystole and the R peak of the
next normal cycle ( t) was determined.

A full compensatory pause was determined under the following
conditions:

According to the above rules, the values of features were determined for
each sample from the training set, and, in this way, matrix B was obtained.
Further, according to formula (6), the transition matrix T was determined.

Coefficient  was calculated to evaluate the agreement between the
class annotations in the test set and the class predictions made by the

 model. Coefficient was calculated to determine the agreement
between the class annotations obtained by the  model and those
obtained by the approximated feature values.

The resulting  was 0.98. To assess the precision of this estimate, a
95% confidence interval (CI) was computed, resulting in a CI of 0.96–1.00.
Additionally, the associated p value was calculated to be <0.001, indicating
that the observed agreement is highly unlikely to be due to chance. The high

 value, combined with the narrow confidence interval, signifies an almost
perfect agreement between the expert annotations and the  model’s
predictions. This strong agreement is further supported by the p value,
which confirms the statistical significance of the result.

The resulting  was 0.89, with a 95% CI of 0.85–0.93, and a p value of
<0.001. This  value indicates a strong agreement between the model’s
predictions and the approximated feature-based annotations, although it is
slightly lower than . The slightly broader confidence interval reflects a bit
more variability in the agreement, which could be attributed to the



approximation process. Nonetheless, the p value still indicates that this
agreement is highly significant, and the  value demonstrates that the
expert’s features can reliably replicate the decisions made by the 
model.

The comparison between  and , along with their respective
confidence intervals and p-values, provide a comprehensive understanding
of the model’s performance. The high  value, coupled with a narrow
confidence interval and a significant p-value, confirms the  model’s
capability to accurately classify ECG in alignment with expert annotations.
The slightly lower, yet still strong,  value suggests that while the
approximated feature values can effectively mirror the model’s decisions,
there is a slight decrease in agreement, which may warrant further
investigation into the approximation methods, or the features used.

4.2 Detection of pathologies of heart activity based on MRI

The proposed scalable approach was also validated by the  model
for the problem of detecting pathologies of heart activity based on MRIs
(Slobodzian et al., 2023).

Next, we briefly describe the training dataset of MRIs, the 
model, the set of features that explained the decisions, and the results of the
proposed approach (the value of κ).

4.2.1 Training dataset and DL model

For the problem of detecting pathologies of heart activity based on
MRIs, a modified dataset of the Automatic Cardiac Diagnosis Challenge
(ACDC) (Bernard et al., 2018) was used. Samples of the ACDC set of 100
and 50 patients were used for training and testing the network, respectively.
Given the annotations to the ACDC set, the following classes/pathologies
were selected for classification:

• Normal condition.
• Dilated cardiomyopathy (DCM).
• Hypertrophic cardiomyopathy (HCM).



• Myocarditis (MINF).
• Arrhythmogenic right ventricular cardiomyopathy (ARV).

An example of presenting input data to the DL model according to the
ACDC dataset is illustrated in Figure 6.

FIGURE 6
A 3D visualization of segmented MRI data prepared for classification, with images from the ES
phase in panel (A) and the ED phase in panel (B), while preserving MRI signal intensity values
across layers for enhanced phase differentiation.

The  model was created based on the modified architecture from
Slobodzian et al. (2023). The classification accuracy for the test set of MRIs
was over 96.5%. The size of the  matrix was  = 100 – the number
of objects from the training subsample of the ACDC dataset,  = 1,024 –
the number of features formed by the  model.

4.2.2 Features in MRI for explanation

For the classification task, 20 features were considered. At the same
time, according to the features of identifying pathologies identified by the
doctor, the following set of geometric features was formed for further
classification:



• The ratio of the volume of the left ventricle to the volume of the right
ventricle at the end of systole.

• The volume of the left ventricle at the end of the systole.
• The ratio of the volume of the left ventricle to the volume of the right

ventricle at end-diastole.
• The volume of the left ventricle at end-diastole.
• The volume of the right ventricle at end-systole.
• The volume of the right ventricle at end-diastole.
• Ejection fraction of the left ventricle.
• Ejection fraction of the right ventricle.
• The ratio of myocardial volume to left ventricular volume at the end of

systole.
• Myocardial mass at the end of diastole.
• Myocardial volume at the end of systole.
• The ratio of myocardial mass to left ventricular volume at the end of

diastole.
• Maximum average myocardial wall thickness at end-diastole.
• Maximum average myocardial wall thickness at end systole.
• Mean standard deviation of myocardial wall thickness at end-systole.
• Mean standard deviation of myocardial wall thickness at end-diastole.
• Standard deviation of the standard deviation of myocardial wall thickness

at end-diastole.
• Standard deviation of the standard deviation of myocardial wall thickness

at end-systole.
• Standard deviation of mean myocardial wall thickness at end-diastole.
• Standard deviation of mean myocardial wall thickness at end-systole.

For the interpretation task, we utilized 20 features selected based on
clinical guidelines for diagnosing DCM, such as those provided by the
American College of Cardiology and the European Society of Cardiology.
Cardiologists integrated these guidelines and applied expert rules to identify
key geometric features, enhancing model explanations and performance:

1. Left ventricular end-diastolic volume (LVEDV):

• Integration of Clinical Guidelines: Elevated LVEDV is a primary
diagnostic criterion for DCM according to clinical guidelines.



• Expert Rules Applied: An LVEDV exceeding clinically established
thresholds, adjusted for body surface area, indicates DCM.

• Method of Measurement: Calculated LVEDV from segmented MRI
images using volumetric analysis, following standardized protocols.

1. Left ventricular ejection fraction (LVEF):

• Integration of Clinical Guidelines: Reduced LVEF (<45%) is a key
indicator of systolic dysfunction in DCM patients.

• Expert Rules Applied: An LVEF below clinical thresholds signifies
impaired cardiac function consistent with DCM.

• Method of Measurement: Derived from LVEDV and end-systolic volume
(LVESV) using the formula:

1. Myocardial mass at end-diastole:

• Integration of Clinical Guidelines: Changes in myocardial mass are
significant in DCM diagnosis, as per clinical standards.

• Expert Rules Applied: Increased myocardial mass beyond normal ranges
for a given body size indicates pathological remodeling associated with
DCM.

• Method of Measurement: Estimated myocardial mass using standardized
techniques, ensuring compliance with clinical measurement guidelines.

By incorporating clinical guidelines and expert rules into the feature
selection and quantification process, we ensured that the features are
clinically meaningful, thereby enhancing the interpretability and
performance of the  model.

4.2.3 Statistical analysis for MRI classification

For further experiments, the DCM class was chosen. Since the volume
of the training set was small, it did not take much time for experts to fill in



the values of features. Cardiologists as experts determined the values of
features for each sample from the training set and, in this way, matrix B was
formed. Further, according to formula (6), the transition matrix T was
determined.

For each object from the test set, the values of features were
approximated according to formula (8). Subsequently, two key values of κ
were also calculated to assess the agreement between the predictions 
of and the expert annotations. These κ values provide a quantitative
measure of the reliability and consistency of the  model’s
performance, and they were computed using formula (9).

Coefficient  was calculated to evaluate the agreement between the
class annotations in the test set and the classifications made by the 
model.

Coefficient  was calculated to determine the agreement between the
class annotations obtained by the  model and those obtained through
the approximated feature values.

The resulting  value was 0.87, indicating a very good level of
agreement. To further substantiate this finding, a 95% confidence interval
was computed, yielding a range of 0.83–0.91. Additionally, the associated
p-value was determined to be <0.001, confirming the statistical significance
of this agreement. The relatively narrow confidence interval suggests that
the  value is a stable estimate, and the low p-value strongly supports that
the observed agreement is unlikely due to random chance. This high 
value aligns well with the model’s overall performance, highlighting the

 model’s robust capability in accurately classifying MRI data per
expert labels.

The resulting  value was 0.80, with a 95% confidence interval of
0.76–0.84, and a p value of <0.001. This  value indicates a significant
match, though slightly lower than , reflecting a strong agreement but with
slightly more variability. The broader confidence interval compared to 
suggests some degree of uncertainty, possibly arising from the
approximation process or the inherent variability in the feature values.
Nonetheless, the significant p value still confirms that this agreement is
meaningful and not due to random variation.

The comparison between  and , along with their respective
confidence intervals and p-values, provides a detailed insight into the



 model’s performance and the reliability of the feature approximation
approach. The  value of 0.87, with a narrow confidence interval and a
highly significant p-value, underscores the strong alignment between the
model’s predictions and expert annotations. Meanwhile, the slightly lower

 value of 0.80 suggests that while the approximation method is effective,
there is a minor decrease in agreement that could be attributed to the
complexity of the MRI data or the approximation method itself.

Overall, the inclusion of these detailed statistical indicators, i.e., κ
values, confidence intervals, and p values, adds robustness to the analysis,
strengthening the reliability and validity of both  and  model’s
performance and the transparency of the proposed scalable approach.

4.3 Discussion and limitations of the proposed scalable approach

While the proposed scalable visual analytics approach has demonstrated
high reliability and enhanced interpretability by showing strong agreement
between the  and  models and expert annotations, several
practical challenges and limitations must be acknowledged when
considering real-world healthcare applications.

Firstly, the heterogeneity inherent in real-world healthcare settings
presents a significant limitation. Diverse patient populations, varying data
quality, and differing clinical protocols across institutions can affect the
generalizability and robustness of the model. Implementing the approach
across multiple institutions may be challenging due to inconsistencies in
data formats, acquisition techniques, and labeling standards. This diversity
can lead to models that are tailored to specific datasets and may not perform
effectively on unseen data from different sources or populations. Variations
in patient demographics and disease prevalence can also impact on the
model’s ability to generalize, potentially limiting its clinical utility.
Addressing this drawback requires extensive validation and potential
customization for each setting, which can be resource-intensive.

Secondly, integrating the proposed method into existing clinical
workflows poses practical challenges. The approach requires careful
planning to ensure it does not disrupt standard practices or burden
healthcare professionals. Clinicians may need additional training to
interpret the model outputs effectively, and the time required to compute



interpretable features and generate explanations must be minimized to be
practical in fast-paced clinical environments. This limitation could hinder
the adoption of the approach, as any increase in workload or decrease in
efficiency is a significant drawback in clinical settings where time and
resources are limited. Future research should focus on streamlining the
computation processes and developing user-friendly interfaces to facilitate
seamless integration.

Data privacy and security concerns present another critical limitation.
Utilizing patient data for model training and feature extraction raises
significant privacy issues, and ensuring compliance with regulations such as
HIPAA (Modifications to the HIPAA Privacy, Security, Enforcement, and
Breach Notification Rules, 2013) or GDPR (European Parliament and
Council of the European Union, 2016) is essential. There is a risk that the
transparency provided by the approach may inadvertently reveal sensitive
information or biases present in the data. This limitation is a significant
drawback because it can lead to ethical and legal consequences if patient
confidentiality is compromised. Implementing secure data handling
protocols, anonymization techniques, and establishing ethical guidelines for
the use of AI-generated explanations are necessary steps to mitigate these
concerns.

The reliance on expert-defined features introduces potential biases and
inconsistencies, which is another notable limitation. Creating a
comprehensive and universally accepted list of interpretable features is
challenging, as experts may have differing opinions on which features are
most relevant. This subjectivity can lead to models that only partially
capture the diversity of clinical presentations and may overlook subtle but
significant patterns present in the data. Additionally, features may exhibit
high multicollinearity, where multiple features are correlated with each
other, reducing the clarity and effectiveness of the model’s explanations.
This limitation can result in oversimplified diagnoses and potentially
unreliable model explanations, which is a drawback for clinical decision-
making. To resolve this, future research should incorporate data-driven
feature selection methods alongside expert input, such as PCA, t-SNE or
mutual information techniques, to identify relevant features that enhance
the model’s robustness.

Consistency in determining numerical feature values is also a limitation.
Experts may struggle to quantify features invariably, especially those



requiring subjective assessment or intricate measurement protocols. This
inconsistency can introduce variability into the training data, leading to
potentially unreliable model explanations and affecting the model’s
performance on new data. This is a drawback because it reduces trust in the
system’s outputs and can hinder clinical adoption. Developing clear
guidelines and automated measurement tools can reduce variability in
feature quantification. Leveraging objective, reproducible measurement
techniques minimizes reliance on subjective assessments, enhancing
consistency across diverse users and settings.

The inherent complexity of DL models poses challenges for
interpretability, despite using the transition matrix approach. High-
dimensional feature spaces and nonlinear relationships make it challenging
to interpret how input data influences the model’s predictions fully. This
complexity can hinder the ability to provide clear and actionable
explanations to healthcare professionals, which is a significant drawback
since interpretability is crucial for trust and acceptance in clinical practice.
Utilizing model-agnostic interpretability tools, such as SHapley Additive
exPlanations (SHAP) values or Local Interpretable Model-agnostic
Explanations (LIME), can provide insights into model predictions even in
complex models. Simplifying model architectures where possible and
focusing on key features can make interpretations more accessible to
clinicians.

Finally, the scalability of our approach suggests its potential
applicability to a wide range of medical domains beyond ECG and MRI
analysis. By mapping complex DL model outputs to interpretable features
defined by experts, the method can be adapted to other types of medical
data, such as histopathology images, genomic data, or medical text analysis.
For instance, in histopathology, features like cell morphology, tissue
patterns, and staining intensities could be used to explain DL models
classifying cancer subtypes. In genomics, gene expression levels, mutation
frequencies, or pathway activations might serve a similar purpose.
Moreover, the approach could help interpret DL models processing clinical
notes in medical text analysis by linking model outputs to medically
relevant terms and concepts.

Addressing these limitations requires a multidisciplinary effort
involving clinicians, data scientists, ethicists, and policymakers. We can
enhance the model’s robustness and interpretability by incorporating data-



driven feature selection methods alongside expert input, implementing
regularization techniques, and utilizing model-agnostic interpretability
tools. Developing clear guidelines and automated tools for consistent
feature quantification will improve reliability. Establishing ethical
frameworks and ensuring compliance with data privacy regulations will
mitigate legal and ethical concerns. Enhancing the scalability and
generalization of the approach through flexible frameworks and adaptation
techniques is essential for its practical implementation. Future research
should focus on these areas to overcome the identified drawbacks and
facilitate broader implementation of the approach in real-world healthcare
applications.

5 Conclusion
In this study, we introduced a scalable approach designed to make DL

model decisions more explainable by mapping them to interpretable
features defined by healthcare experts. The criteria for selecting these
features were clearly established, integrating clinical guidelines and expert
rules to ensure that the features are clinically relevant, measurable,
distinctive, and agreed upon by professionals. The approach was rigorously
tested on two distinct medical datasets: ECG signals for detecting
arrhythmias and MRI scans for classifying heart diseases. The DL models
achieved Cohen’s Kappa coefficients of 0.89 for the ECG and 0.80 for the
MRI datasets, demonstrating strong agreement with expert annotations.
These results underscore the reliability of the proposed method in providing
accurate, understandable, and justifiable explanations of DL model
decisions.

Addressing potential limitations, our approach acknowledges the
challenges of feature selection biases, generalization to unseen data, and
interpretability in complex models. By incorporating data-driven feature
selection methods alongside expert input–such as PCA, t-SNE or mutual
information techniques–we can reduce biases and enhance the model’s
robustness. Implementing regularization techniques, cross-validation, and
testing on external datasets can improve generalizability. Utilizing model-
agnostic interpretability tools like SHAP values or LIME can provide



insights even in complex models, making interpretations more accessible to
clinicians.

Overall, our scalable approach enhances the interpretability of DL
models in medical applications by providing accurate, understandable, and
justifiable explanations according to established medical standards. This
positions the method as a valuable tool for integrating AI into diverse areas
of healthcare, potentially improving diagnostics, treatment planning, and
patient outcomes across various specialties while addressing practical
challenges and ethical considerations.

Future work should focus on integrating clinical guidelines and expert
rules more systematically into the feature selection and model development
process. This integration will enhance model explanations and performance
by ensuring that the features and model outputs align with established
medical standards. Moreover, improving the feature selection process
through standardized and automated methods, along with enhancing the
scalability of the approach for adaptation to various medical datasets and
clinical environments, will further strengthen the utility and applicability of
the method in real-world healthcare settings.
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