МОНОГРАФІЇ
Бармак О.В., Крак Ю.В., Мазурець О.В., Манзюк Е.А. Ментально-формальні рішення машинного навчання для інформаційної технології автоматизованого створення тестів у сфері безпеки та медицини. Інформаційні системи та технології. Стан та перспективи: монографія. Одеса: НУ «ОМА», 2021. – С.78-90.

Розроблена інформаційна технологія надає повноцінний інструмент для проведення адаптивного семантичного тестування рівня знань у сфері безпеки та медицини, що забезпечує всі ланки автоматизованого тестування рівня знань від завантаження документу навчального матеріалу до обрахунку оцінки рівня його вивчення. Проведені прикладні дослідження ефективності розробленого методу, в порівнянні з традиційним алгоритмом вибору тестових завдань, встановили, що тестування забезпечило в середньому на 20,53% більш швидке проходження тесту; для визначення рівня знань знадобилося використання в середньому на 19,33% меншої кількості завдань. Інформаційна технологія адаптивного семантичного тестування рівня знань навчальних матеріалів дає можливість використовувати різні алгоритми старту тестування, динаміки тестування та оцінювання рівня знань.
Перевагою запропонованої інформаційної технології є вирішення проблеми вибору наступних тестових завдань у процесі тестування, які за параметрами максимально відмінні від використаних тестових завдань й вимагають постійного оновлення параметрів вибору. Це дозволяє збільшити повноту і рівномірність тестування, забезпечує можливість гнучкої деталізації тестування, що особливо актуально для сфери безпеки та медицини.

Krak I. V., Barmak O. V., Manziuk E. Visual analytics to build a machine learning model. Research Advancements in Smart Technology, Optimization, and Renewable Energy. IGI Global, 2021. Pp. 313-329.

One of the most interesting and promising areas of development of machine learning is the active involvement of a human in the process of building a model. However, there are problems with the effective integration of humans into a workflow. It is necessary to develop techniques and information technologies that would allow the effective use of human intellectual capabilities, thereby expanding the machine learning tools. This work considers the use of visual analytics with the goal of building a machine learning model by a human and the technique of transferring this model to the machine level. This made it possible to expand the capabilities of machine learning through the active and productive use of human intellectual abilities.
Mazurets O., Barmak O., Krak I., Manziuk E., Bahrii R. Method for adaptive semantic testing of educational materials level of knowledge. Lecture Notes on Data Engineering and Communications Technologies. 2021. Vol. 77. Pp. 491–506.

The article considers the method that allows to calculate the estimation of knowledge level of educational materials by using indicators of semantic importance of key terms for adaptive selection of test tasks in testing. Each test task allows to purposefully check the level of knowledge of separate semantic units of educational materials – semantic terms (words, phrases). It is assumed that increasing the depth of learning of educational material semantic content has the effect of learning less semantically important units of educational materials.
Krak, I., Kruchynin, K., Barmak, O., Manziuk, E., Kruchinin, S.P. Visual Analytics in Machine Training Systems for Effective Decision. NATO Science for Peace and Security Series A: Chemistry and Biology, 2020, с. 327-338

The approaches to the formation, development of a formal and mental model based on the use of visual analytics are proposed. It is based on the description of model building technologies. An example of information technology that allows getting a formal model based on the transformation of the mental model through the space of formalized universal forms is given. This allows the model to be used in a different usage and execution environment. Model development is carried out using loops the improvement of the base model or transforming the use of the model from another runtime. An example of equipment and tools for the construction and transformation of models is demonstrated.
Сергієнко І.В., Крак Ю.В., Бармак О.В, Куляс А.І. Системи жестової комунікації: моделювання та розпізнавання дактильної жестової мови. Монографія. – К: Наукова думка, 2019. – 284 с.

Монографію присвячено актуальним проблемам моделювання та розпізнавання дактильної жестової мови як засобу комунікації між людьми, що чують та людьми з вадами слуху.
Для фахівців у галузі кібернетики, моделювання, штучного інтелекту, побудови людино-комп’ютерних інтерфейсів, дослідження жестових мов спілкування, а також для студентів і аспірантів відповідних спеціальностей.

Peters L., Krak Iu., Barmak O., Romanyshyn S., Kotyra A., Gromaczek K., Smailova S. Information technology for automated translation from inflected languages to sign language. In monograph: Recent Advances in Information Technology. Ed. By Waldemar Wojcik, Jan Sikora. CRC Press, Taylor & Francis Group. 2018. P. 51-82

This chapter describes the information technologies that allow inflected languages to the sign languages (SL) for, using machine translation. The main aim of the research is to elaborate new computer systems for training and communication for the deaf people. One of the problems is the inclusion of deaf in active social life. Information technology for nonverbal communication of deaf could help to solve this problem. Automatic translation of inflected languages into natural SL involves the establishment of appropriate information technology.

Barmak O., Krak Iu., Romanyshyn S. Text to gestures translation for inflected languages. LAP LAMBERT Academic Publishing. 2017. – 110p

The book describes methods and information technology to implement machine translation of inflected languages to the sign language (SL) of the deaf people. The development of computer technologies helps to solve the socially significant problems, which were previously problematic, like the inclusion of deaf in active social life. The main obstacle to solving this problem is difficulty in communication between deaf and hearing people. The aim of the investigation is to create new information technology for nonverbal communication of deaf.

Ю.Г.Кривонос, Ю.В.Крак, О.В.Бармак, С.О.Романишин Системи жестової комунікації: трансформація тексту в жести. Київ, Наукова думка. 2016. – 230 с.

Монографію присвячено вивченню актуальної проблеми розробки інформаційних технологій для реалізації комп’ютерного перекладу вербальних мов, які характеризуються способом утворення граматичних форм слів шляхом зміни їхніх закінчень (флексій) на жестові мови з метою створення нових комп’ютерних системи навчання та комунікації для людей з вадами слуху.
Для фахівців у галузі кібернетики, моделювання, штучного інтелекту, побудови людино-комп’ютерних інтерфейсів, дослідження жестових мов спілкування, а також для студентів і аспірантів відповідних спеціальностей.

Ю.Г.Кривонос, Ю.В.Крак, О.В.Бармак Системи жестової комунікації: моделювання інформаційних процесів. Київ, Наукова думка. 2014. – 228 с.

Монографію присвячено вивченню актуальних проблем моделювання невербальних каналів комунікації. Запропоновано нові методи створення віртуальних моделей людини, синтезу емоційних і мімічних складових на обличчі людини, побудови та керування рухами людини для комп’ютерного моделювання жестового мовлення.
Для фахівців у галузі кібернетики, моделювання, штучного інтелекту, побудови людино-комп’ютерних інтерфейсів, дослідження жестових мов спілкування, а також для студентів і аспірантів відповідних спеціальностей.ПАТЕНТИ, СВІДОТСТВА ПРО РЕЄСТРАЦІЮ АВТОРСЬКОГО ПРАВА НА ТВІР

Мазурець О. В. Пат. на корисну модель 137386. Україна, МПК G06F 17/00. Спосіб обмеження переліку ключових слів тексту.
№ u201900552; заявл. 18.01.2019; опубл. 25.10.2019, Бюл. № 20.

Мазурець О. В. Пат. на корисну модель 129903. Україна, МПК G06F 17/00. Спосіб визначення переліку ключових слів у тексті.
№ u201707242; заявл. 10.07.2017; опубл. 26.11.2018, Бюл. № 22.

Свідотство № 60040 (Рішення від 05.06.2015 р.) про реєстрацію авторського права «Комп’ютерна програма для автоматизації перекладу з української на жестову мову» (О.В.Бармак, Ю.В.Крак, С.О.Романишин)
НАВЧАЛЬНІ ПОСІБНИКИ
Сорокатий Р.В., Пасічник О.А., Скрипник Т.К. Основи об‘єктно-орієнтованого програмування: навч. посіб. / Р.В. Сорокатий, О.А. Пасічник, Т.К. Скрипник. Хмельницький: ХНУ, 2019. – 175 с.

У навчальному посібнику викладені концепції об’єктно-орієнтованого програмування. Пояснення матеріалу та його аналіз супроводжується прикладами програм, які реалізовані мовою С#. Наведений практикум з прикладами та індивідуальними завданнями, що формують практичні навики об’єктно-орієнтованого програмування.
Посібник призначений для студентів ЗВО, які вивчають інформаційні технології в рамках дисципліни «06’єктно-орієнтоване програмування».

Манзюк Е.А., Лищук О.А., Мазурець О.В., Петровський С.С., Багрій Р.О. Основи проектування та розробки веб-додатків : навч. посіб. / Е. А. Манзюк, О. А. Лищук, О. В. Мазурець [та ін.]. – Хмельницький : ХНУ, 2019. – 186 с.

У навчальному посібнику викладені концепції об’єктно-орієнтованого програмування. Пояснення матеріалу та його аналіз супроводжується прикладами програм, які реалізовані мовою С#. Наведений практикум з прикладами та індивідуальними завданнями, що формують практичні навики об’єктно-орієнтованого програмування.
Посібник призначений для студентів ЗВО, які вивчають інформаційні технології в рамках дисципліни «06’єктно-орієнтоване програмування».
